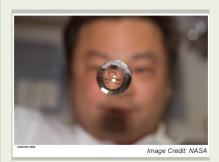
Zero-Energy Ultrafast Water Nanofiltration System in Microgravity

Completed Technology Project (2016 - 2017)

Project Introduction


The goal of this program is to develop a water nanofiltration system that functions in microgravity for use during a long-duration human space exploration. The proposed nanofiltration system targets deep space crewed missions beyond low-Earth orbit (LEO) where it is impossible to launch fresh resupplies or carry sufficient mass and volume of life-sustaining equipment. Based on spontaneous surface-tension-driven flows, no external power is required to selectively transport water molecules through a nanostructured membrane. The speed of water transport through the membrane can be dramatically accelerated multiple orders of magnitude faster than prediction from conventional fluid-flow theory, while the confinement and electrostatic interactions lead to excellent salt rejection. The novelty of the microgravity filtration system includes zero-power consumption, ultrafast filtration, surface-tension-driven flow control in microgravity, excellent impurity rejection rate, lightweight, compact size, portability, recyclability and scalability.

Current water filtration methods include distillation and membrane-based technologies. Both methods require a significant amount of energy. For example, reverse osmosis (RO), an energy-efficient membrane-based process, requires a fair amount of energy to apply 800-1000 psi across membrane filters. NASA tested a forward osmosis bag (FOB) on the ISS in an effort to provide a more energy-efficient solution. Despite lower power consumption (@ 25psi), the FOB required long filtration times (6 hours per 60 ml of a treated water sample), since it solely relies on a slow diffusion mechanism. Given limitations of energy and speed, a highly efficient filtration system is desperately needed for successful implementation of long-duration, deep space human exploration missions within the next 20 years. To achieve low power consumption and high speed, a new type of water filtration system is being researched on the basis of surface-tension-driven flows across a nanostructured membrane in microgravity.

Anticipated Benefits

This technology would allow highly efficient, ultralight-weight, water filtration on the International Space Station (ISS).

The proposed highly efficient, lightweight, nanofiltration system could be a key component for portable life support systems and emergency escape systems during deep space human exploration beyond LEO.

Astronaut watches a sphere of water float between him and the camera, showing his image refracted, on the International Space Station (ISS). (Image credit: NASA)

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	2
Organizational Responsibility	2
Project Management	2
Images	3
Technology Maturity (TRL)	3
Technology Areas	3

Center Innovation Fund: LaRC CIF

Zero-Energy Ultrafast Water Nanofiltration System in Microgravity

Completed Technology Project (2016 - 2017)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead	NASA	Hampton,
	Organization	Center	Virginia
National Institute of	Supporting	Academia	Hampton,
Aerospace	Organization		Virginia

Primary U.S. Work Locations

Virginia

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

Responsible Program:

Center Innovation Fund: LaRC CIF

Project Management

Program Director:

Michael R Lapointe

Program Manager:

Julie A Williams-byrd

Principal Investigators:

Sang-hyon Chu Cheol Park

Co-Investigators:

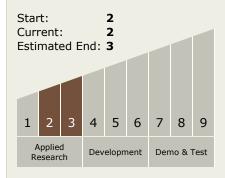
Catharine C Fay John-andrew S Hocker

Center Innovation Fund: LaRC CIF

Zero-Energy Ultrafast Water Nanofiltration System in Microgravity

Completed Technology Project (2016 - 2017)

Images



Water in microgravity

Astronaut watches a sphere of water float between him and the camera, showing his image refracted, on the International Space Station (ISS). (Image credit: NASA)

(https://techport.nasa.gov/imag e/26109)

Technology Maturity (TRL)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.1 In-Situ Resource Utilization
 - □ TX07.1.3 Resource Processing for Production of Mission Consumables

